2017-02-01

Feb 1 In-Class Exercise.

Hi Everyone,
Post your proofs for the Feb 1 in-class exercise here.
Best, Chris
Hi Everyone, Post your proofs for the Feb 1 in-class exercise here. Best, Chris

-- Feb 1 In-Class Exercise
We will prove that `n! = O((n/2)^n)`. To show this, we want to find a constant c s.t. `n! <= c*(n/2)^n`. Base case: `n = 2`
`2! <= c*(2/2)^2` `2! <= c*1^2`, works for `c = 2`. Inductive case: Knowing that `n! <= c*(n/2)^n`, we want to show `(n+1)! <= c*((n+1)/2)^(n+1)` Break down into: `(n+1) * n! <= c((n+1)/2)^n * c((n+1)/2)`. Divide out the original rule to yield: `n+1 <= c((n+1)/2)` If c >= 2, the above inequality will be satisfied.
(Edited: 2017-02-01)
We will prove that @BT@n! = O((n/2)^n)@BT@. To show this, we want to find a constant c s.t. @BT@n! <= c*(n/2)^n@BT@. Base case: @BT@n = 2@BT@ @BT@2! <= c*(2/2)^2@BT@ @BT@2! <= c*1^2@BT@, works for @BT@c = 2@BT@. Inductive case: Knowing that @BT@n! <= c*(n/2)^n@BT@, we want to show @BT@(n+1)! <= c*((n+1)/2)^(n+1)@BT@ Break down into: @BT@(n+1) * n! <= c((n+1)/2)^n * c((n+1)/2)@BT@. Divide out the original rule to yield: @BT@n+1 <= c((n+1)/2)@BT@ If c >= 2, the above inequality will be satisfied.

-- Feb 1 In-Class Exercise
Here's my solution; I hope the parentheses are correct
Base Case: f(4) = (4/2)^4 = 16 4! = 12 TRUE
inductive case: Assume (n/2)^n > n!
((n+1)/2)^(n+1) >= (n+1)! ((n+1)/2)^n * (n+1)/2 >= n! * (n+1) >>Divide by (n+1) ((n+1)/2)^n * 1/2 >= n!
By the inductive hypothesis (n/2)^n > n! Therefore if we can prove 1/2*((n+1)/2)^n >= (n/2)^n, we have proved our theorem
1/2*((n+1)/2)^n >= (n/2)^n
((n+1)^n)/(2^(n+1)) >= (n^n)/(2^n) ((n+1)^n)/2 >= (n^n)
(n+1)^n >= (n^n)*2 n^n + n*n^(n-1) + K*n^(n-2) >= (n^n)*2
n*n^(n-1) + K*n^(n-2) >= n^n n^n + K*n^(n-2) >= n^n
therefore: true
Here's my solution; I hope the parentheses are correct Base Case: f(4) = (4/2)^4 = 16 4! = 12 TRUE inductive case: Assume (n/2)^n > n! ((n+1)/2)^(n+1) >= (n+1)! ((n+1)/2)^n * (n+1)/2 >= n! * (n+1) >>Divide by (n+1) ((n+1)/2)^n * 1/2 >= n! By the inductive hypothesis (n/2)^n > n! Therefore if we can prove 1/2*((n+1)/2)^n >= (n/2)^n, we have proved our theorem 1/2*((n+1)/2)^n >= (n/2)^n ((n+1)^n)/(2^(n+1)) >= (n^n)/(2^n) ((n+1)^n)/2 >= (n^n) (n+1)^n >= (n^n)*2 n^n + n*n^(n-1) + K*n^(n-2) >= (n^n)*2 n*n^(n-1) + K*n^(n-2) >= n^n n^n + K*n^(n-2) >= n^n therefore: true

-- Feb 1 In-Class Exercise
Just a comment. If you want to use latex expressions enclose them using backquotes rather than $.
(Edited: 2017-02-01)
Just a comment. If you want to use latex expressions enclose them using backquotes rather than $.

-- Feb 1 In-Class Exercise
Resource Description for cw1.jpg
((resource:cw1.jpg|Resource Description for cw1.jpg))

-- Feb 1 In-Class Exercise
Resource Description for 19E5397D-988B-4521-B3B5-13B05B79CEEF.jpeg
((resource:19E5397D-988B-4521-B3B5-13B05B79CEEF.jpeg|Resource Description for 19E5397D-988B-4521-B3B5-13B05B79CEEF.jpeg))
X